

# LTEK INNO-Q

# Microplate Spectrophotometer

# **Absorbance Test Plate**

New generation for Microplate spectrophotometers is here



### Microplate Spectrophotometer Absorbance Test Plate

### INNO-Q™ (Absorbance Test Plate)

The LTEK™ INNO microplate spectrophotometer is a 21st century new generation instrument for all the researches that deals with the absorbance and luminescence. INNO-Q is an absorbance test plate that is designed and manufactured just for INNO & INNO-M for the instrument performance check. It allows the users to be able to check the instrument's quality by

checking the linearity, accuracy and alignment. Also, it comes in handy when the distributors are performing the demonstrations with their customers by using the quantitative experiment function with our software INNO-X. Allowing to review with 7 different regressions data results and calibration value with format of graphs.

#### LTEK INNO-Q™ (Absorbance Test Plate)

#### INNO-Q™ (Absorbance Test Plate)

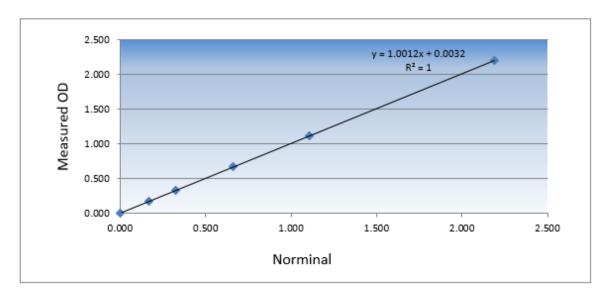
- · Linearity Check
- · Accuracy Check
- · Alignment Check
- Easy demonstration for the instrument performance by using Quantitative experiment function.





### • INNO-Q

Able to check out the performance of the instrument.


| 000  | T       | ek   | IN            | INC   | <b>.</b> & C  | IN            | NO            | -M            | Liı           | nea     | arity   | , <b>A</b> | CC     | ura      | асу        | , 8    | ιAl    | ign           | me            | ent           | Те            | st            |         |     |     |
|------|---------|------|---------------|-------|---------------|---------------|---------------|---------------|---------------|---------|---------|------------|--------|----------|------------|--------|--------|---------------|---------------|---------------|---------------|---------------|---------|-----|-----|
|      |         |      |               |       |               |               |               |               |               | Rea     | der mod | el: IN     | INO    | & INN    | D-M        |        |        |               |               |               |               |               |         |     |     |
|      |         |      |               | Firs  | t 450n        | ım me         | asure         | ment          |               |         |         |            |        |          |            |        | 4      | 05nm          | measi         | ureme         | nt            |               |         |     |     |
| /ell | 1       |      | 2 3           | 3 4   | 1 5           | 6             | 7             | 8             | 9             | 10      | 11      | 12 W       | /ell   | 1        | 2          | 3      | 4      | 5             | 6             | 7             | 8             | 9             | 10      | 11  |     |
| à.   | 0       |      | OVER          | OVER  | 0.178         |               |               |               |               | OVER    | 0       | 0 A        | ,      | 0        |            | OVER   | OVER   | 0.195         | 0.351         | 0.749         |               |               | OVER    | 0   |     |
| 3    | 0       | OVER | D OVER        | OVER  | 0.178         |               | 0.668         | 1.106         |               | OVER    | 0       | 0 B        | 3      | 0        | OVER       |        | OVER   | 0.195         | 0.35          | 0.749         |               |               | OVER    | 0   |     |
| )    |         | OVER |               | OVER  | 0.178         |               | 0.668         |               |               | OVER    | 0       | 00         | 1      |          | OVER       | OVER   | OVER   | 0.135         | 0.35          |               |               |               | OVER    | 0   |     |
|      | 0       |      | OVER          | OVER  | 0.179         |               | 0.668         | 1,106         |               | OVER    | ŏ       | 0 E        |        | ő        |            | OVER   | OVER   | 0.195         | 0.35          |               |               | 2,579         | OVER    | 0   |     |
|      |         | OVER | OVER          | OVER  | OVER          | OVER          | OVER          |               | OVER          | OVER    | 0       | 0 F        |        |          |            | OVER   | OVER   |               |               | OVER          | OVER          | OVER          | OVER    | 0   |     |
| à    | 0       |      | OVER          | OVER  | OVER          | OVER          | OVER          | OVER          | OVER          | OVER    | 0       | 0 G        | à      | 0        |            | OVER   | OVER   | OVER          | OVER          | OVER          | OVER          | OVER          | OVER    | 0   |     |
| 1    | 0       | OVER |               | OVER  | OVER          | OVER          | OVER          | OVER          | OVER          | OVER    | 0       | 0 H        | 1      | 0        | OVER       | 0      | OVER   | OVER          | OVER          | OVER          | OVER          | OVER          | OVER    | 0   |     |
|      | Wavelen | ath: | 450           | +     | _             |               |               |               |               | _       |         | +          |        | Wavelend | eh.        | 450    |        |               |               | _             | _             |               |         | _   |     |
| /ell | aveieri | gt.  | 2 3           | 3 4   | 1 5           | 6             | 7             | 8             | 9             | 10      | 11      | 12 W       | /ell   | 1        | juri.<br>2 |        | 4      | . 5           | 6             | 7             | 8             | 9             | 10      | 11  | - 1 |
| 1    | 0       |      | OVER          | OVER  | 0.179         |               | 0.668         | 1.107         |               | OVER    | 0       | 0 A        | 1      | 0        |            | OVER   | OVER   | 0.178         | 0.325         |               | 1.109         |               | OVER    | 0   |     |
| 3    |         | OVER |               | OVER  | 0.178         |               | 0.668         | 1.106         |               | OVER    | 0       | 0 B        | 3      |          | OVER       |        | OVER   | 0.178         | 0.325         | 0.67          | 1.108         |               | OVER    | 0   |     |
| )    | 0       |      | OVER          | OVER  | 0.178         |               | 0.668         | 1.106         |               | OVER    | 0       | 000        |        | 0        |            | OVER   | OVER   | 0.178         | 0.324         | 0.67          | 1.109         |               | OVER    | 0   |     |
| ,    | 0       | OVER | DOVER         | OVER  | 0.178         |               | 0.669         | 1.107         |               | OVER    | 0       | 0 0        | :      | 0        | OVER       | OVER   | OVER   | 0.178         | 0.324         | 0.67          | 1.108         | 2.213         | OVER    | 0   |     |
|      |         | OVER | OVER          | OVER  | OVER          | OVER          | OVER          | OVER          | OVER          | OVER    | 0       | 0 F        |        |          |            | OVER   | OVER   | OVER          | OVER          | OVER          | OVER          | OVER          | OVER    | 0   |     |
| 3    | 0       | -    | OVER          | OVER  | OVER          | OVER          | OVER          | OVER          | OVER          | OVER    | 0       | 0 G        | 3      | 0        | 0          | OVER   | OVER   | OVER          | OVER          | OVER          | OVER          | OVER          | OVER    | 0   |     |
| 1    | 0       | OVER |               | OVER  | OVER          | OVER          | OVER          | OVER          | OVER          | OVER    | 0       | 0 H        | ł      | 0        | OVER       | 0      | OVER   | OVER          | OVER          | OVER          | OVER          | OVER          | OVER    | 0   |     |
|      |         | Ļ    | <b></b>       |       |               |               |               |               |               |         |         | _          |        |          |            |        |        |               |               |               |               |               |         |     |     |
| /ell | Wavelen |      | 450<br>2 3    | 1     | 1 5           | 6             | ,             |               | 9             | 10      | 11      | 10 0       | /ell   | Waveleng | ith:<br>2  | 490    | 1      | -             | 6             | ٠,            | 8             | 9             | 10      | 11  | 1   |
| A    | 0       |      | OVER          | OVER  | 0.179         |               | 0.668         | 1,107         |               | OVER    | 0       | 0 A        | Vell   | i        |            | OVER   | OVER   | 0.152         | 0.297         |               |               |               | OVER    | 0   |     |
| 3    | Ō       | OVER |               | OVER  | 0.178         |               | 0.668         | 1.106         |               | OVER    | ō       | 0 B        | 3      | ō        | OVER       |        | OVER   | 0.152         | 0.296         | 0.598         | 1.065         |               |         | 0   |     |
| 3    | 0       |      | OVER          | OVER  | 0.178         |               | 0.668         | 1.106         |               | OVER    | 0       | 0 C        | ;      | 0        |            | OVER   | OVER   | 0.151         | 0.296         | 0.597         | 1.065         |               | OVER    | 0   |     |
| )    |         | OVER |               | OVER  | 0.179         |               | 0.668         | 1.107         |               | OVER    | 0       | 0 0        | )      |          | OVER       | 0      | OVER   | 0.152         | 0.296         |               | 1.065         | 2.12          |         | 0   |     |
| -    | 0       | OVER | OVER          | OVER  | 0.179<br>OVER | 0.324<br>OVER | 0.668<br>OVER | 1.106<br>OVER | 2.199<br>OVER | OVER    | 0       | 0.5        |        | 0        |            | OVER   | OVER   | 0.152<br>OVER | 0.296<br>OVER | 0.598<br>OVER | 1.063<br>OVER | 2.107<br>OVER | OVER    | 0   |     |
| 3    | ő       |      | DOVER         | OVER  | OVER          | OVER          | OVER          | OVER          | OVER          | OVER    | ő       | 0 6        | ,      | 0        |            | OVER   | OVER   | OVER          | OVER          | OVER          | OVER          | OVER          | OVER    | 0   |     |
| 1    |         | OVER |               | OVER  | OVER          | OVER          | OVER          | OVER          | OVER          | OVER    | Ö       | 0 H        | 1      |          | OVER       |        | OVER   | OVER          | OVER          | OVER          | OVER          | OVER          | OVER    | 0   |     |
|      |         |      |               |       |               |               |               |               |               |         |         |            |        |          |            |        |        |               |               |               |               |               |         |     |     |
|      | Wavelen | gth: | 450           | )     |               |               |               |               |               |         |         |            |        | Waveleng | jth:       | 540    |        | L             |               |               | L .           |               |         |     |     |
| /ell | 0       | -    | 2 3<br>DIOVER | OVER  | 0.178         |               |               | 1,107         | 2 188         | OVER 10 | 11      | 12 W       | /ell   | - 1      | 2          | OVER 3 | OVER 4 | 0.142         | 0.284         |               | 1.043         |               | OVER 10 | 11  | 1   |
| 3    |         | OVER |               | OVER  | 0.178         |               | 0.668         | 1.107         |               | OVER    | 0       | 0 B        | 3      |          | OVER       |        | OVER   | 0.142         | 0.284         |               |               |               | OVER    | 0   |     |
|      | 0       |      | OVER          | OVER  | 0.178         |               | 0.669         | 1.106         |               | OVER    | Ö       | 0 C        |        | 0        |            | OVER   | OVER   | 0.141         | 0.283         | 0.565         | 1.042         | 2.071         | OVER    | 0   |     |
| )    |         | OVER |               | OVER  | 0.178         |               | 0.669         | 1.107         |               | OVER    | 0       | 0 D        | )      |          | OVER       | 0      | OVER   | 0.142         | 0.284         |               |               |               | OVER    | 0   |     |
|      | 0       |      | OVER          | OVER  | 0.178         |               | 0.668         | 1.106         |               | OVER    | 0       | 0 E        |        | 0        |            | OVER   | OVER   | 0.142         | 0.284         | 0.565         |               | 2.072         | OVER    | 0   |     |
|      |         | OVER |               | OVER  | OVER          | OVER          | OVER          | OVER          | OVER          | OVER    | 0       | 0 F        |        |          |            | OVER   | OVER   | OVER          | OVER          | OVER          | OVER          | OVER          | OVER    | 0   |     |
| 1    | 0       | OVER | OVER          | OVER  | OVER          | OVER          | OVER          | OVER          | OVER          | OVER    | 0       | 0 6        |        | 0        | OVER       | OVER   | OVER   | OVER          | OVER          | OVER          | OVER          | OVER          | OVER    | 0   |     |
|      | - 0     | OVER | + '           | JOVEN | JOVEN         | JOVEN         | OVER          | OVEN          | OVER          | JVLN    | -       | o n        |        | - "      | UVLN       | Η,     | OVER   | JVLN          | OVEN          | JOVEN         | OVEN          | OVEN          | OVEN    | - 0 |     |
|      | Wavelen | gth: | 450           |       |               |               |               |               |               |         |         |            |        | Waveleng | jth:       | 620    | 1      |               |               |               |               |               |         |     |     |
| /ell | 1       | - :  | 2 3           | 3 4   | 1 5           |               |               | 8             | 9             | 10      | 11      | 12 W       | /ell   | 1        | 2          | 3      | 4      | . 5           | 6             | 7             | 8             |               | 10      | 11  |     |
|      | 0       |      | OVER          | OVER  | 0.179         |               |               |               |               | OVER    | 0       | 0 A        |        | 0        |            | OVER   | OVER   | 0.146         | 0.299         |               |               |               |         | 0   |     |
|      |         | OVER |               | OVER  | 0.178         |               | 0.668         | 1.107         | 2.189         | OVER    | 0       | 0 B        | 3      |          | OVER       |        | OVER   | 0.145         | 0.299         | 0.592         | 1.026         |               | OVER    | 0   |     |
| 1    | 0       | OVER | OVER          | OVER  | 0.178         |               | 0.669         | 1.106         | 2.196         |         | 0       | 010        | ,<br>1 | 0        | OVER U     | OVER   | OVER   | 0.145         | 0.298         | 0.592         |               | 2.048         | OVER    | 0   |     |
| _    | 0       |      | OVER          | OVER  | 0.179         |               | 0.669         | 1,107         | 2.187         |         | 0       | 0 F        | ,      | 0        |            | OVER   | OVER   | 0.145         | 0.233         | 0.592         | 1.025         | 2.056         | OVER    | 0   |     |
|      |         | OVER | OVER          | OVER  | OVER          | OVER          | OVER          | OVER          | OVER          | OVER    | Ö       | 0 F        |        | 0        |            | OVER   | OVER   | OVER          | OVER          | OVER          | OVER          | OVER          | OVER    | 0   |     |
| 3    | 0       |      | OVER          | OVER  | OVER          | OVER          | OVER          | OVER          | OVER          | OVER    | 0       | 0 G        | 9      | 0        |            | OVER   | OVER   | OVER          | OVER          | OVER          | OVER          | OVER          | OVER    | 0   |     |
| 1    | 0       | OVER |               | OVER  | OVER          | OVER          | OVER          | OVER          | OVER          | OVER    | 0       | 0 H        | 1      | 0        | OVER       | 0      | OVER   | OVER          | OVER          | OVER          | OVER          | OVER          | OVER    | 0   |     |

X Above is the Microsoft Excel measurement result chart by pasted into the INNO-Q excel(provided at purchase).



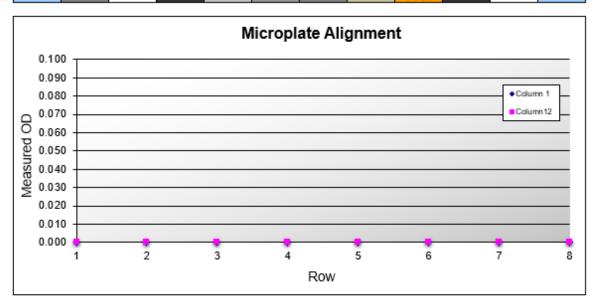
# INNO & INNO-M Linearity & Accuracy

|   | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    |
|---|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Α | 0.000 | 0.000 | 9.999 | 9.999 | 0.179 | 0.323 | 0.668 | 1.107 | 2.193 | 9.999 | 0.000 | 0.000 |
| В | 0.000 | 9.999 | 0.000 | 9.999 | 0.178 | 0.323 | 0.668 | 1.106 | 2.195 | 9.999 | 0.000 | 0.000 |
| С | 0.000 | 0.000 | 9.999 | 9.999 | 0.178 | 0.323 | 0.668 | 1.106 | 2.200 | 9.999 | 0.000 | 0.000 |
| D | 0.000 | 9.999 | 0.000 | 9.999 | 0.178 | 0.324 | 0.669 | 1.107 | 2.194 | 9.999 | 0.000 | 0.000 |
| Е | 0.000 | 0.000 | 9.999 | 9.999 | 0.179 | 0.324 | 0.668 | 1.106 | 2.197 | 9.999 | 0.000 | 0.000 |
| F | 0.000 | 9.999 | OVER  | 9.999 | OVER  | OVER  | OVER  | OVER  | OVER  | 9.999 | 0.000 | 0.000 |
| G | 0.000 | 0.000 | 9.999 | 9.999 | OVER  | OVER  | OVER  | OVER  | OVER  | 9.999 | 0.000 | 0.000 |
| Н | 0.000 | 9.999 | 0.000 | 9.999 | OVER  | OVER  | OVER  | OVER  | OVER  | 9.999 | 0.000 | 0.000 |



| Nominal | Blanked | CheckMark Plate |         |         |  |  |
|---------|---------|-----------------|---------|---------|--|--|
| Value   | Value   | Mean            | Blanked | Std Dev |  |  |
| 0.000   | -0.001  | 0.000           | 0.000   | 0.000   |  |  |
| 0.17    | 0.169   | 0.178           | 0.178   | 0.000   |  |  |
| 0.321   | 0.320   | 0.323           | 0.323   | 0.000   |  |  |
| 0.66    | 0.659   | 0.668           | 0.668   | 0.000   |  |  |
| 1.1088  | 1.108   | 1.107           | 1.107   | 0.000   |  |  |
| 2.188   | 2.187   | 2.196           | 2.196   | 0.007   |  |  |

| Measurment Wavelength Accuracy |       |       |       |          |  |  |  |  |  |  |
|--------------------------------|-------|-------|-------|----------|--|--|--|--|--|--|
| wavelength                     | OD    | -20%  | 20%   | measured |  |  |  |  |  |  |
| 405nm                          | 0.746 | 0.597 | 0.895 | 0.748    |  |  |  |  |  |  |
| 450nm                          | 0.667 | 0.534 | 0.800 | 0.668    |  |  |  |  |  |  |
| 490nm                          | 0.597 | 0.478 | 0.716 | 0.598    |  |  |  |  |  |  |
| 540nm                          | 0.565 | 0.452 | 0.678 | 0.565    |  |  |  |  |  |  |
| 620nm                          | 0.589 | 0.471 | 0.707 | 0.592    |  |  |  |  |  |  |


#### **LINEARITY & ACCURACY RESULTS**

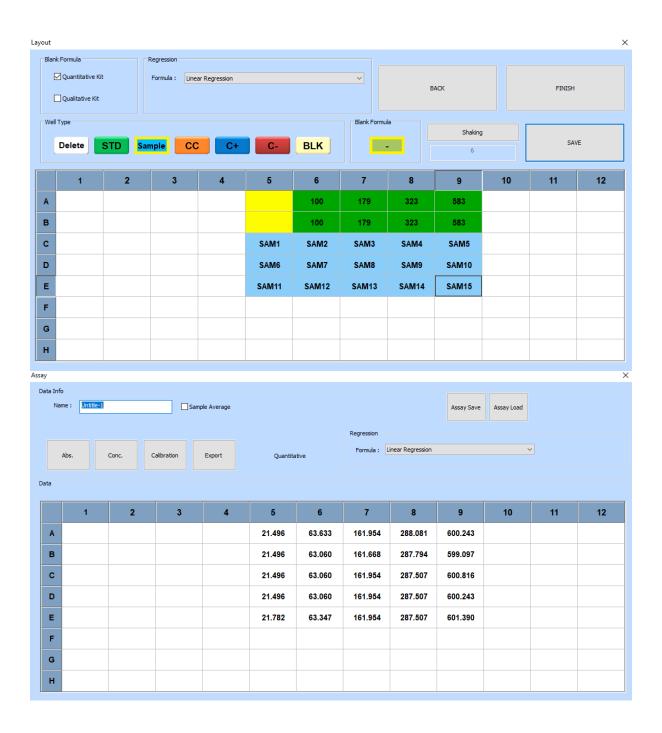
| Linearity relative to Nominal | TRUE |  |
|-------------------------------|------|--|
| 405 nm                        | TRUE |  |
| 450 nm                        | TRUE |  |
| 490 nm                        | TRUE |  |
| 540 nm                        | TRUE |  |
| 620 nm                        | TRUE |  |



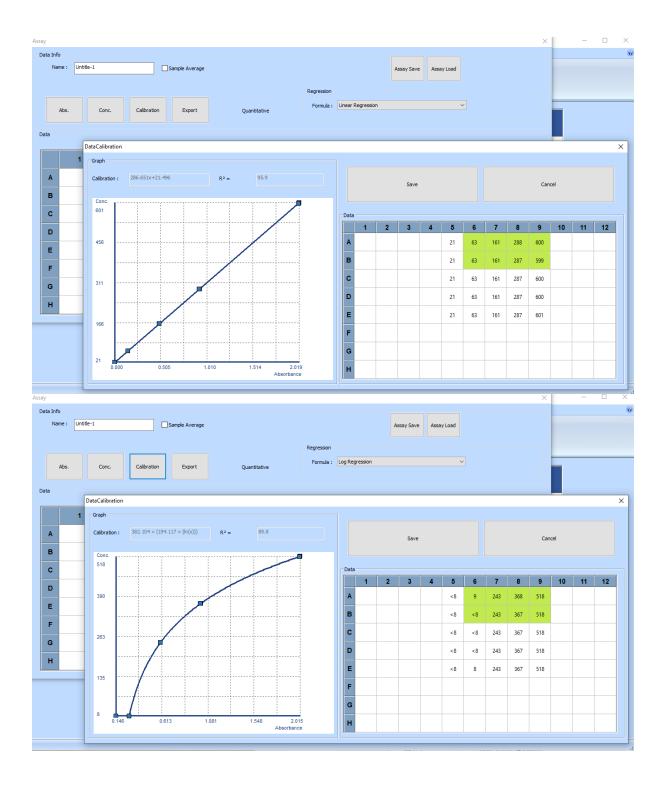
# **□** INNO & INNO-M Microplate Alignment

|   | Averag | ges   |       |       |       |       |       |       |       |       |       |       |
|---|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|   | 1      | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    |
| Α | 0.000  | 0.000 | 9.999 | 9.999 | 0.179 | 0.323 | 0.668 | 1.107 | 2.193 | 9.999 | 0.000 | 0.000 |
| В | 0.000  | 9.999 | 0.000 | 9.999 | 0.178 | 0.323 | 0.668 | 1.106 | 2.195 | 9.999 | 0.000 | 0.000 |
| С | 0.000  | 0.000 | 9.999 | 9.999 | 0.178 | 0.323 | 0.668 | 1.106 | 2.200 | 9.999 | 0.000 | 0.000 |
| D | 0.000  | 9.999 | 0.000 | 9.999 | 0.178 | 0.324 | 0.669 | 1.107 | 2.194 | 9.999 | 0.000 | 0.000 |
| Ε | 0.000  | 0.000 | 9.999 | 9.999 | 0.179 | 0.324 | 0.668 | 1.106 | 2.197 | 9.999 | 0.000 | 0.000 |
| F | 0.000  | 9.999 | OVER  | 9.999 | OVER  | OVER  | OVER  | OVER  | OVER  | 9.999 | 0.000 | 0.000 |
| G | 0.000  | 0.000 | 9.999 | 9.999 | OVER  | OVER  | OVER  | OVER  | OVER  | 9.999 | 0.000 | 0.000 |
| н | 0.000  | 9.999 | 0.000 | 9.999 | OVER  | OVER  | OVER  | OVER  | OVER  | 9.999 | 0.000 | 0.000 |




| Alignment                        |       |
|----------------------------------|-------|
| Mean Column 1                    | 0.000 |
| Mean Column 12                   | 0.000 |
| Standard Deviation (p) Column 1  | 0.000 |
| Standard Deviation (p) Column 12 | 0.000 |
| Thresholds value                 | 0.015 |
| Slope Column 1                   | 0.000 |
| Slope Column 12                  | 0.000 |

#### ALIGNMENT RESULTS


| //EIGHHIEHT I (EG       |      |
|-------------------------|------|
| Alignment Column 1:     | TRUE |
| Alignment Column 12:    | TRUE |
| Alignment Left to Right | TRUE |



#### **Quantitative Experiment Measurement**











- $\times$  INNO-Q (Absorbance test plate) is not only for the instrument performance check but also is a tool for 3Qs (IQ, OQ, & PQ).
- \*\* INNO-Q allows you to test and analyze variety of tests by using our software INNO-X without having to use actual Linear, Quadratic, Cubic, Log, Exponential, Point to point, and 4PL regression types of reagents.







- Monochromator-based optical system for free selection of wavelengths from 200nm to 1000nm.
- · No filter is needed for these readings.
- · INNO is able to read microplate with 6 ~ 384 wells
- INNO can perform endpoint, Kinetics reading, and spectral scanning• Both photometric acuity and linearity of INNO-M, it should be 0-2,000 OD +/- 1%.
- · INNO is able to be used in all studies such as routine biology tests, protein analysis, nucleic acidity.
- Nano-V can analyze DNA/RNA quantities. (Micro volume plate / 24well supported)
- · Plate capable of quantitative analysis with 2ul.
- · The light source of INNO is the Xenon lamp.
- The software to be supplied with INNO-M; Abs, UV-Abs, and modes, Endpoint, Kinetic and Spectral scanning.
- · INNO-M is able to report result graphics in excel file format.
- INNO-M software supports Linear, Quadratic regression, Cubic regression, Log regression, Exponential regression, Linear logarithmic regression, point-to-point, and 4PL regression graphic options.





### Luminescence

- · Detection method is Photomultiplier (PMT)
- · Measuring Wavelength range is between 300nm to 700nm.
- · Limit of Detection 3x10<sup>-21</sup> moles.





## **LTEK**

# Specification for INNO and INNO-M

|                               | Absorbance                                                                              |
|-------------------------------|-----------------------------------------------------------------------------------------|
| Wavelength Accuracy           | ±2 nm                                                                                   |
| Electrical Requirements       | INPUT 100 to 240V 50/60Hz / (65W Adaptor)                                               |
| Microplate type               | 6 ~ 384 well plate                                                                      |
| Detector                      | Photodiode                                                                              |
| Light source                  | Xenon flash                                                                             |
| Wavelength Range              | 200 to 999 nm                                                                           |
| Wavelength selection          | Monochromator                                                                           |
| Application                   | Wavelength scanning, end point, Kinetic, Area scan                                      |
| Dynamic range                 | 0 ~ 4.0 OD                                                                              |
| OD accuracy                   | 0 ~ 2 OD ±1%                                                                            |
| OD linearity                  | 0 ~ 2 OD ±1%                                                                            |
| OD repeatability              | 0 ~ 2 OD ±1%                                                                            |
| Shaking                       | Two step speed                                                                          |
| Software                      | INNO X (Windows Software)                                                               |
| DNA/RNA Micro Volume plate    | 24well / 2ul Sample (Option)                                                            |
|                               | LUMINESCENCE                                                                            |
| Detector                      | Photomultiplier (PMT)                                                                   |
| Wavelength range              | 300 – 700nm                                                                             |
| Peak Wavelength               | 420nm                                                                                   |
| Limit of Detection (moles)    | 3x10 <sup>-21</sup> moles                                                               |
| Supported software regression | Linear, Quadratic, Cubic, Log, Exponential, Linear logarithmic, point-<br>to-point, 4PL |
| Weight                        | 8kg                                                                                     |
| Size                          | 333x303x245                                                                             |

# Available products

| Product name Description |                                                                      |  |  |  |
|--------------------------|----------------------------------------------------------------------|--|--|--|
| INNO                     | Microplate Spectrophotometer (Absorbance)                            |  |  |  |
| INNO-M                   | Microplate Spectrophotometer (Absorbance + Luminescence)             |  |  |  |
| INNO-I                   | INNO-I 1.5ml Microcentrifuge Cuvette Type Luminometer (Luminescence) |  |  |  |
| INNO-N                   | Micro Volume Spectrophotometer                                       |  |  |  |
| NANO-V(Option)           | 24 Wells / 2ul samples                                               |  |  |  |
| INNO-Q(Option)           | Absorbance Test Plate                                                |  |  |  |

#### **Contact info**

Homepage: <a href="www.ltekc.com">www.ltekc.com</a> / Tell: +82-70-7755-9375 / Overseas sales manager: ysk0109@ltekc.com

